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I. Introduction 

ANY problems in aerodynamic design can be characterized by smooth and convex objective functions. M This motivates the use of gradient-based algorithms, particularly for problems with a large number 
of design variables, to  efficiently determine optimal shapes and configurations that maximize aerodq-namic 
performance. Accurate and efficient computation of t h e  gradient, iiowever, rernains a chaiiengirig task. In 
optimization problems where the number of design variables dominates the number of objectives and flow- 
dependent constraints, the cost of gradient computations can be significantly reduced by the use of the 
adjoint met hqd. 

The problem of aerodynamic optimization using the adjoint method has been analyzed and validated 
for both structured and unstructured grids. The method has been applied to design probiems governed 
by the potential, Euler, and Xayier-Stokes equations and can be subdivided into the continuous1~2~3~4 and 
discrete forrnulation~.'~~~'.~,~~ Giles and Pierce" provide a detailed review of both approaches. Most 
implementations rely on grid-perturbation or mapping procedures during the gradient computation that 
explicitly couple changes in the surface shape to  the volume grid. The solution of the adjoint equation is 
usually accomplished using the same scheme that solves the governing flow equations. Examples of such 
code reuse include multistage Runge-Xutta schemes coupled with mu!~igrid,~,' approximate-factorization,6 
line-implicit Ga.uss-Seide1,'; l3 and also preconditioned G;VIRES.l0, l1 

The development of the adjoint method for aerodynamic optimization problems on Cartesian grids has 
been limited. In  contrast to implementations on structured and unstructured grids, -Cartesian grid methods 
decouple the surface discretization from the volume grid.14 This feature makes Cartesian methods well 
suited for the automated analy-sis of complex geometry problems, and consequently a promising approach 
to aerodynamic optimization. Melvin e t  al. l5 developed an adjoint formulation for the TRA4N-41R code:16 
which is based on the full-potential equation with viscous corrections. More recently, Dadone and Gross- 
man17 presented an adjoint formulation for the Euler equations. In both approaches, a boundary condition 
is introduced to  approximate the effects of the evolving surface shape that results in accurate gradient 
computation. 
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In Ref. is: we presented an eifecIive framework for complex geometry aerodyiiamic optimization problems. 
Key modules of t he  framework were R Cn.rtesjan inyiscid-flow analysis package. C a ~ t . 3 D . ~ ~ . ~ ~  and a direct- 
C-4.D interface.” -4 2enetic and gradient-based algorithms were used to drive the Optimization procedure. 
The gradients were computed via finite-difierences. 

In this work. we improve the efficiency of the gmdient computation bj- developing an adjoint method for 
aerodynamic optimization on Cartesian grids with embedded boundaries. MTe present the numerical imple- 
mentation for the discrete approach, where the adjoint solver efficiently reuses the domain decomposition. 
multigrid. and time-marching schemes of the flow solver. We focus on the accuracy of the gradient computa- 
tion? which requires careful treatment of cut-cells: the underlying surface triangulation, and the interface to 
a parametric-CAD system. T h e  final paper will contain a n u m b e r  of complex geo.metry, industr ial ly  relevant, 
examples wi th  m a n y  design variables to  demonstrate the eflectiveness of the adjoint method on, Cartesian 
grids. 

11. Problem Formulation 

The aerodynamic shape optimization problem consists of 
determining values of design variables X, such that the ob- 
jective function J is minimized 

subject to constraint equations C, 

where the vector Q denotes the continuous, conservative  ow 
variables and Nc denotes the number of constraint equations. 
The flow 1-ariables are forced to satisfy the governing flow 
equations n-ithin a feasible region of the design space R 

F(X, Q) = 0 v x E n ( 3 )  

which implicitly defines Q = f ( X ) .  
The objective function defines the goals of the optimiza- 

tion problem, while the constraint equations limit the feasi- 
ble region of the design space. The constraints may involve 
performance functionals: such as lift, geometric quantities, 
such as volumes and thicknesses, and also simple bound con- 
straints for design variables. Performance objectives can be 
specified for the entire configuration or for a specific sub- 
set of components, for example moments on control surfaces. 
This is accomplished by using the Geometry Manipulation 

Component Intersection 
(Definition of Wetted Surface) 

Objective and Constraint 
Evaluation 

Figure 1. Components of the analysis module 

Protocol,22 where we specify component hierarchies for parametric-CAD assemblies and triangulations to  
intuitively reflect aerodynamic design goals. 
X modular framework‘’ is used to  solve the optimization problem defined by Eqs. 1-3. We cast the 

optimization problem as an unconstrained problem by lifting the side constraints. Eq. 2, into the objective 
function using a penalty method. The constraint imposed by the flowfield equations, Eq. 3, is satisfied at  
every point within the feasible design space, and consequently these equations do not explicitly appear in the 
formulation of the optimization problem. An unconstrained BFGS quasi-Newton algorithm coupled with a 
backtracking line ~ e a r c h ” , ’ ~  is used to  find the optimal solution. At the core of the optimization framework 
is the analysis module, which consists of a C-4D system interface provided by C,4PRI.25)21 a Cartesian grid 
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generat.or for component-based geoinetry.19 and a f i o ~  soh-er, as omlined in Fig. 1. Below. n-e provide a 
brief description of the flow solver.. Thereafter; 1x-e focus on the del-elopment, of the gradient computation 
algorithm. 

111. Flow Solver 

The governing flow equations are the three-dimensional steady-state Euler equations of a perfect gas. -4 
second-order accurate finite-volume spatial discretization is used. which is based on van Leer’s flux vector 
splitting.2o The resulting system of nonlinear equations is given by 

R(Q, X) = 0 (4) 

where Q = [ p ,  pu. pu, pzc. pEIT denotes the discrete vector of integral cell averages. In each cell of the volume 
grid. the residual vector can be expressed as 

where Va is the cell volume, 6’0 are the faces of the cell. F is the flux vector, and .fi is the face unit normal. 
-4lthough R is written as a function of the design variables, we emphasize that during a flow solution the 
design variables remain constant .A solution is achieved by introducing an unsteady term given by 

and marching to  steady-state using a Runge-Kutta scheme in conjunction x i th  a parallel multigrid method.” 

IV. Adjoints and Sensitivities 

The gradient, G, of the objective function 3 [X, Q(X)]  is given by 

vihere Q denotes a discrete steady-state solution of the flow equations. We reduce the vect,or of design 
variables, X ,  to  a s c a h  in order to  clearly distinguish between partial and total derivatives. For problems 
with multiple design variables, i t  may be helpful to note that G and a J / d X  are [l x A-D] row vectors: 
aJ /aQ is a [l x i&~] row vector: and dQ/dX is a iNF x N D ]  matrix. where r\i, and LVF represent the number 
of design and flow variables, respectively. 

Throughout this development, we assume that the implicit function Q(-X)  is sufjiciently smooth. The- 
oretically, this assumption is violated at flow discont.inuities, for example shock waves, and leads to  the 
requirement for additional boundary condirions. in  practice, the smoothing of the discoiltiiiiiities by- the  
underiying spatia; ciiscxeiuailoll of tlie fivw eqiiati~iis piz-v-ides B c (x) t ~ z t  is x ~ c i ~ ~ t k ;  XXCC~‘..”. l2 

In  Eq. 7 ,  the evaluation of the term dQ/dX, referred to  as the flow sensitivities, is obtained by difleren- 
tiating Eq. 4 with respect to the design variables 

. .  

dR dR , d R d Q  
d X - d X  d Q d X  -r -- -- _. 

Realizing that  $$ = 0, since for any design variable Eq. 4 is always satisfied, Eq. 8 simplifies to  the following 
large sparse system of linear equations 

a R d Q  i3R 
8 Q d X  i3X (9) - -- - -- 
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, 
I 

- l h e  direcr, or don;-sensitivit>-. method resuks from soiving Eq. 9 for the flow serisitil-itis dQ;dS  and  win^ 
these .-slues in Eq. 7 to  obtain the gra.diellt. 

In order to  formulate the disc&-adjoint method. substitute Eq. 9 int.0 Eq. 7 t o  obtain 

dJ - d J  8 3  dR - ' d R  
d X  i3X dQ (a) 

From the triple-product term in Eq. 10: define the following intermediate problem 

where d is a [NF x 11 column vector. Post-multiplication of both sides by dR/dQ and applying the transpose 
operator results in the following linear system of equations 

This is known as the adjoint equation: and the vector $ represents the adjoint variables. Substituting $ into 
Eq. 10, the expression for the gradient becomes 

Note that Eq. 9 is a linear system with multiple right-hand sides dependent on the number of design variables. 
In contrast, Eq. 12  is independent of the design variables, which is the reason for the efficiency of the adjoint 
rr?ethod. 

A. Numerical Method 

The parallel multigrid method from the flow solver is adopted to solve both the adjoint and flow-sensitivity 
equations. We consider the flow sensitivity equation first. since with this approach the explicit linearization 
of the residual equations is not necessary. The matrix-yector product on the left-hand side of Eq. 9 is 
approximated as follows. 

(14) 
dR R (Q f E U )  - R(Q) - 
d Q U  = E 

vr-here 21 = dQ/dX and E = ~ / ~ ~ u ~ ~ .  For the cases considered in t h s  work, we set E = 1 x lop4 in order 
to  simplifs- the numerical implementation of Eq. 14. To solve for the flo7-c-sensitivities. let 

and introduce an unsteady term in Eq. 9 to  obtain the foliowing expression 

dR dQ* - d t  + R ( Q * )  = R(Q) - E -  ax 
The only difference between Eqs 16 and 6 is an extra right-hand-side source term. Recall that Q is held 

fixed and we set the initial vector u to  zero. Hence, the solution algorithm used for the flow equations can 
be recycled to  solve the flow-sensitivity- equation with only a minor modification to  the multigrid forcing 
function. We expect the same asj-nptotic convergence raIe for both algorithms. A limitation of this approach 
is the choice of the constant stepsize E .  In our experience, the approach works  ell for subsonic flows and 
serves as a useful debugging tool for establishing the accuracy of the gradient computation. The final paper 
will include a detailed discussion of the adjoint solver. 
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The partial derivative term 8J laQ in Eqs. 7 and 12 is evaluated using finite differences. Xote that care 
must be talien to ensure that the evaluation of the objective function is consistent n-ith the enforceineiit of 
the boundary conditions in the residual equations. Otherwise, the adjoint solution may contain oscillations 
near wall boundaries: as demonstrated by Lu and Darmofal.” TVe plan to invesdgate this further in the 
final paper. 

The remaining partial derivative terms in E,qs. 7 and 13, namely t.he objective function sensitivity dJ l8 -X  
and the residual sensitivity dR/d.Y, are usually approximated with finite differences as well. Although in 
some instances the partial derivatives can be obtained analytically, finite differences are necessary when a 
CAD system is used to parameterize the geometry. For example: the centered-difference formula for the 
residual sensitivities is given by 

dR 
d X  n 2h 

R(X + hen, Q )  - R (X - hen, &) - -  - 

where en denotes the nth unit vector, 

h = max(cO . IXnI, 6) (18) 

and n. = 1,.  . . , iV,. Typical value of eo is 1 x lob3. It is important to  realize that Eq. 17 involves two 
evaluations of only the residual vector per d e s i s  variable and not two flow solutions, i.e. Q is constant. 

Before presenting our numerical implementation for the computation of a J / d X  and d R / d X  on Cartesian 
grids. i t  is insightful to briefly review the implementations on structured and unstructured grids. The 
standard finite-difference approach relies on a grid-perturbation strategy to smoothly “convect“ the nodes 
of the volume grid with the perturbed surface geometry. This results in an accurate and efficient evaluation 
of the partial derivative terms. Alonso e t  d2’ have successfully extended this approach to  a CAD-based 
&sip er?virc\.n.ment hy ir?troducing geometry patches within the parametric-CAD model. 

An important observation is that the grid-perturbation strateg3- explicitly couples shape sensit,ivities to  
volume grid sensitivities. However, a grid-perturbation without a corresponding surface perturbation should 
not, in principle, influence the objective function gradient. On the basis of this argument, Jameson and 
Kimzg introduced a reduced adjoint gradient formulation where only surface perturbations are considered. 
Their results indicate t.hat for shape optimization problems the reduced approach works well. Similar results 
are also presented by Soto and Lohner.30 In contrast, work by Xriderson and Venkatakri~hnan~ and later 
by Xielsen and Anderson3’ shows that for cases that involve rigid body motion, for example flap position 
optimization, the use of a grid-perturbation strategy is important. This appears to be related to  the treatment 
of the trailing-edge singularity. 

Turnin% our attention back t,o embedded-boundary Cartesian grids, we note that a perturbation of the 
surface shape affects only a few near-by cells of the volume grid. Therefore. the extent of grid sensit5vities 
is naturally limited to  roughly O(iV”) cells for a volume grid Kith 0(?V3) cells. However, a straightforward 
implementation of finite differences is complicated by the emergence and disappearance of cut-cells at  the 
wall boundary, as well as the relative mation of the discretized surface with respect to the volume grid. 

To circumvent these difficulties, we use the following approach. For d J  j d X ,  the converged flow solution 
is reconsmucted t o  the vercices of the underiying surface xrianguiation. Given a siiiaii per Lurlatioii, a 
new surface triangulation is generated using the CAPRI interface. We force the new triangulation to  have 
a one-to-one triangle mapping with respect t o  the baseline triangulation. This is accomplished by using 
the parametric values of the baseline triangulation when tessellating the perturbed surface. The objective 
function values required for the finite-difference approximation are now evaluated using the triangulations 
instead of the volume grid. Hence, the potentially non-smooth changes in the cut-cells are avoided, and 
the enforcement of constant Q in the evaluation of this partial derivative term becomes a trivial task. This 
approach works well for both shape and rigid-body motion design variables. 

For the remaining term dR/d..ri‘, we have implemented and studied two approaches, both based on finite- 
differences. In the first approach, we assume that the only parameter dependent on the design variables 
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in E,q. -1 is the surface normal. This approach is siinilar to the "transpiration" boundary condition used in 
TR?,TAIF,."'. l 5  It is re1,ztivel:- easy to implement; aiid the evaluation of aR/a-Y is fast sincp t h e  voliime grid 
remains unchanged. The accuracy of this approximation can be siifiicient when the design variables involve 
shape changes normal to t.he surface including wingtwist distributions. However: a possible limitation of 
this approach may be rigid-body motion. 

In the second approach, we construct a new vo!ume grid for the perturbed surface t.riangu1at.ion. The 
baseline solution is int.erpolated to  the new grid via a fast interpolation algorithm presented in Ref. 33. We 
evaluate the residual on the new grid, which is then passed back to the baseline grid for the finite-diiference 
computation. Cut-cells that appear or disappear during this procedure are tagged, and we either zero their 
contribution to the residual sensitivity computation: or we interpolate a vaiue from their face neighbors. We 
evaluate both approaches in the following section. 

V. Results and Discussion 

In this abstract we study a simple, two-dimensional design example to validate our approach. The baseline 
geometry is t,he NACA 0012 airfoil parameterized with a cubic B-spline curve using 17 control points. We 
choose the vertical motion of a control point near the leading edge of the airfoil as the design variable, shown 
in Fig. 2. The freestream Mach number is 0.5 and the angle of incidence is fixed at 2 deg. The goal of the 
optimization is lift enhancement. The baseline C, is 0.245 and we specify a target C, of 0.5. The %ohme" 
grid contains roughly 9,000 cells, but since this is a two-dimensional problem, the depth in the span-wise 
direction contains only two cells. To help validate the results, we solve a similar problem using O p t i m a 2 D , l 1  
which is an aerodynamic optimization tool based on a structured-grid approach. 

We begin by examining the compdation of the 
8Jla-X term in Eq. '7. We evaluate the partial 

tion) for the above problem with the angle of inci- 
dence set to  0 and 2 deg. Note that a t  0 deg., this 
partial derivative term should vanish, providing a 
good validation exercise. The result at 0 deg. is 
indeed zero, and at 2 deg. we obtain -2.81 x 
OptimaZD predicts -1.4 x which is a rea- 
sonable agreement considering the differences of 
the two approaches. 

Prior to  solving the flow-sensitivity equa- 
tion, we eyaluate the residual sensitivity 6'RlaX.  
Figure 3(a) shows CJRIBS values for the y- ofthe NACA oo12 
momentum equation. These are obtained by con- 
structing (or re-cutting) a new volume grid for the perturbed sha.pe and interpolating the steady-state 
solution. Figure 3(b) shows the results when only the surface normals are changed. The agreement in Fig.3 
is excellent; however, we note that for the remaining field variables significant errors may arise due to this 
approximation. We plan to investigate this further in the final paper. 

The solution of the flow-sensitivity equation is shown in Fig. 4. Note that the zone of influence for 
the shape design variable extends from the leading edge to roughly 60% chord on the upper surface. The 
convergence of the flow and sensitivity equations is shown in Fig. 5. The flow equations converge in 500 
multigrid cycles (only a 2-level multigrid is used), and the flow sensitivities require additional 400 cycles. The 
final gradient value is -1.35. OptimaBD computes a value of -1.67, while a finite-difference estimation of 
the gradient by recomputing the flow gives -1.55, A grid-refinement st,udy will he included in the final paper 
to demonstrate gradient accuracy. Furthermore, the final paper will contain additional design examples to  
demonstrate the effectiveness of the proposed approach. 

.'eriT.&T.y cf the lift f i L n , C t i O ~ ~  (&jecti..re fur,c- 

Airfoil - Control Points 
Design Variable 

Figure 2. Design variable and B-spline parameterization 
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(a) Sensitivity of Eq. 4 via the grid re-cutting and interpolation approach 

(b) Sensitivity of Eq. 4 using variations of only surface normals 

F igu re  3. Contour s  of aR/BX for the y-momentum equa t ion  
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(a) Cartesian-grid formulation 

. .  . 

(b) Structured-gid approach using Optima2D1' 

Figure  4. C o n t o u r  p lo ts  of flow sensitivity: changes in dens i ty  with respect  to  a s h a p e  design var iable  
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Figure 5. Convergence to  steady-state for the mean flow and the flow-sensitivity equation 
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